Schiffmühle test case

From FIThydrowiki
Revision as of 09:40, 21 January 2020 by Bendikhansen (talk | contribs)
Jump to navigation Jump to search
Fact box: Schiffmühle
Country Switzerland
River Limmat
Operator Limmatkraftwerke AG
Capacity 0.5 MW
Head 2.97 m
Inter-annual discharge 14 m³/s
Turbine(s) 1 Bevel gear bulb turbine
Relevant solutions Applied in test case?
Environmental design of embankments and erosion protection Yes
Fish guidance structures with narrow bar spacing Yes
Fish guidance structures with wide bar spacing -
Mechanical removal of fine sediments (dredging) Yes
Nature-like fishways Yes
Placement of spawning gravel in the river Yes
Pool-type fishways Yes
Vertical slot fishways -
Relevant MTDs Applied in test case?
Acoustic Doppler current profiler (ADCP) Yes
Acoustic Doppler velocimetry (ADV) Yes
Acoustic telemetry -
Agent based model Yes
Barotrauma detection system -
BASEMENT -
Bedload monitoring system Yes
CASiMiR Yes
Current meter Yes
Differential pressure sensor base artificial lateral line probe, iRon Yes
Fish Protection System (induced drift application) -
FLOW-3D Yes
HEC-RAS -
OpenFOAM -
Particle image velocimetry (PIV) Yes
Radio frequency identification with passive integrated transponder (PIT tagging) Yes
Sediment simulation in intakes with Multiblock option (SSIIM) Yes
Shelter measurements Yes
Structure from motion (SfM) Yes
TELEMAC -
Visible implant elastomer -

Introduction

The residual flow and main run-of-river hydropower plants (HPP) Schiffmühle are located on the 35 km long river Limmat in Untersiggenthal and Turgi near Baden, some 27 km downstream of Lake Zurich. Between lake Zurich and Schiffmühle there are seven HPPs, namely in flow direction Letten, Höngg , Dietikon, Wettingen, Aue, Oederlin and Kappelerhof. There are three more power plants between HPP Schiffmühle and the junction with river Aare, namely Turgi, Gebenstorf and Stroppel. Altitudes of the lowest and highest points of river Limmat are 330 m and 406 m, respectively. The surface area of the whole catchment amounts to 2384 km2, of which 0.7 % are glaciated.

On river Limmat, the mean monthly discharge increases from March to June and then decreases from July to October. The annual discharge in 2015 was 89 m3/s, while the long-term average is 101 m3/s (1951-2015).

About the hydropower plant

There are two run-of-river Schiffmühle HPPs on river Limmat in Untersiggenthal and Turgi near Baden, namely the main powerhouse and the residual flow HPP. In the scope of FIThydro, the residual flow HPP is the case study HPP. This HPP has an installed capacity of 0.5 MW and a mean annual output of 1.9 GWh. It operates with a bevel gear bulb turbine.

Layout

The other HPP Schifmühle with the main powerhouse is located downstream of the run-of-river Test Case HPP.

The Operator: Limmatkraftwerke AG (LKW)

LKW produces environmentally friendly and local electricity from four main and two residual flow hydropower plants on river Limmat between Baden and Turgi. The company is owned by the Regionalwerke Holding AG Baden (60%), a local utility company, and the regional power company AEW (40%). The Regionalwerke AG Baden is responsible for the operation of the HPPs and all technical and energy management issues. The administrative and financial management are performed by the Axpo AG. The average annual energy output is around 91 GWh. The company fulfills the standards according to ISO 9001 and the production of renewable energy is certified by TÜV SÜD Erzeugung EE.

Pressures on the water body's ecosystem

The river Limmat is located in the Rhine river catchment, which was historically one of the most important Atlantic salmon rivers in Europe. The upstream migration of Salmons (Salmo Salar) in the Rhine catchment became almost impossible due to transverse structures such as hydropower plants. In the past few years most of the HPPs at the Limmat river have been equipped with state-of-the-art fish upstream passage facilities. However, downstream migration measures and sediment management strategies are not realized in any case. Furthermore, the river Limmat is highly influenced by HPPs and densely populated areas and considered as a heavily modified water body. The river has a moderate ecological potential. Various measures for sediment control, fish migration, flow changes, habitat in-channel and morphology off-channel have been implemented in the water body.

Test case topics

Fish population

The river Limmat is located in the Rhine river catchment, which was historically one of the most important Atlantic salmon (Salmo Salar) rivers in Europe. The following species (see below) face potentially mortality during downstream migration, or difficulties during upstream migration in the Limmat catchment. All of the existing fish species (at least 22 species) in the Limmat River are facing potential mortality during the downstream migration. Some of the most important species are: Eel (Anguilla anguilla), Brown trout, Common barbel (Barbus Barbus), Grayling, Spirlin, Nase, Chub, Bleak.

Downstream migration

At HPP Schiffmühle (Dotierkraftwerk ? residual flow HPP), an angled fish guidance structure with horizontal bars, i.e. Horizontal Bar Rack (HBR), has been implemented to protect and guide fish to the downstream of the HPP in 2013. The rack is positioned parallel to the main flow to have a lateral intake. The HBR has a length of 14.6 m and a spacing of 20 mm between the bars, which are positioned in a vertical angle of 90°. At the end of the rack there is a bypass for the fish with three openings in a vertical chamber in different water depths (close to the bottom, central and close to the surface). From there a 25 cm wide pipe bypasses the fish downstream, letting them out at about 0.20 m above the downstream water level. The discharge at the bypass is 170 l/s.

For monitoring downstream migrating fish, 1 PIT-tag antenna is installed at the bypass.

Upstream migration

HPP Schiffmühle has a combination of a nature-like and a technical fish pass (vertical slot) for upstream migration. The nature-like fish pass entrance is located approx. 36 m downstream of the turbine flow outlet. The technical fish pass entrance is located 2 m downstream of the turbine flow outlet. The outlet of the technical fish pass is merged to the nature-like fish pass at an elevation of 336.83 m a.s.l. The total discharge in the fishway is 0.5 m3/s.

To monitor upstream migration and fish behavior in the migration facilities, 5 PIT-tag antennas are installed in the technical vertical slot fish pass and in the nature-like bypass.

E-flow

The HPP Schiffmühle supplies up to 14.6 m3/s of turbine water and 0.67 m3/s of the water in the fish ladders (upstream and downstream) to the downstream river reach as e-flow. Moreover, during high river discharges, additional water is supplied over the frontal weir at the HPP and over the side weir along the power canal to the residual flow reach.

Sediment management

An innovative vortex tube for bed load transport connectivity, sediment flushing through weirs and upstream and downstream fish migration facilities have been in operation at the residual flow HPP Schiffmühle.

Research objectives and tasks

The planned studies at HPP Schiffmühle will address various aspects of upstream and downstream fish passes, downstream habitat and sediment transport. The findings of the studies will have a wide range of applications for other similarly sized HPPs and answer the fundamental questions on the fish behavior at fish passes.

Research tasks

The research tasks and field studies conducted at Schiffmühle are:

  • Field campaign: hydraulics, habitat, attraction flow and Lateral Line Probe in fish ladder
  • 3D numerical model of HPP area
  • Fish monitoring
  • Bed load monitoring at vortex tube
  • Habitat and sediment modelling

Results