Difference between revisions of "Downstream fish migration"

From FIThydrowiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 10: Line 10:
 
=Downstream fish migration measures=
 
=Downstream fish migration measures=
  
'''NOTE: The downstream fish migration measures are still being completed.'''
+
The various measures to mitigate issues concerning downstream fish migration are listed below.
  
The various measures to mitigate issues concerning downstream fish migration are listed below.
 
  
 
<font size=3 line-height=10><gallery widths=200px heights=200px>
 
<font size=3 line-height=10><gallery widths=200px heights=200px>
Line 21: Line 20:
 
Skimming walls bellows.png|[[Skimming walls (fixed or floating)]]
 
Skimming walls bellows.png|[[Skimming walls (fixed or floating)]]
 
fish_bypass_alpha_rack.png|[[Bypass combined with other solutions]]
 
fish_bypass_alpha_rack.png|[[Bypass combined with other solutions]]
Horiz schiffmuhle_square.png|[[Fish guidance structures with narrow bar spacing]]
+
Schiffmühle HPP narrow.jpg|[[Fish guidance structures with narrow bar spacing]]
uhle_square.png|[[Fish guidance structures with wide bar spacing]]
+
Curved_bar_rack_3d.png|[[Fish guidance structures with wide bar spacing]]
 
coanda_screen_byro_square.png|[[Bottom-type intakes (Coanda screen, Lepine water intake, etc)]]
 
coanda_screen_byro_square.png|[[Bottom-type intakes (Coanda screen, Lepine water intake, etc)]]
 
rotary_screen_square.png|[[Other types of fine screens]]
 
rotary_screen_square.png|[[Other types of fine screens]]
rotary_scsquare.png|[[Fish Protection System (induced drift application)]]
 
 
</gallery></font>
 
</gallery></font>
  

Latest revision as of 12:33, 26 October 2020

Introduction

Figure 1: Horizontally inclined mesh rack and guidance of fish through slots in the rack (arrow A) to a tube back to the river to the right (arrow B) in the intake canal of Las Rives HPP in Ariege River, France

While research and implementation of upstream migration solutions is extensive, and indeed often successful (Scruton et al., 2008), downstream migration of fish remains a major challenge in many river systems. The focus on downstream migration is a result of the increased awareness and knowledge that entrainment in hydroelectric turbines often involves high fish mortality (Larinier and Travade 2002, Fjeldstad et al. 2012, Calles et al. 2013). Safe downstream migration past hydropower structures and intakes is complicated because the fish tend to follow the bulk water flow, which often enters diversion tunnels and turbine intakes. At the same time, downstream migration is crucial for fish to access different habitats for feeding, shelter, spawning and for many fish species, to complete all stages of their life cycle. Hence, effective downstream migration passages should be provided, in particular, if fish can pass a hydropower barrier in upstream direction. The risk of fish injury and mortality from turbine blade strike is particularly harmful for adult fish since the likelihood for blade strike increases with fish length.

Fish migration delay at power plant reservoirs and forebays is challenging because a rapid and synchronized migration is often essential for the fish to complete the most favourable migration. Such delay can cause increased predation, energy loss and, at worst, fish choose not to migrate, which in turn gives ecological effects.

The challenge of safe downstream fish migration is global. Although traditional intake racks or screens themselves are not effective as complete fish barriers, downstream migration past the barrier can be significantly increased if a fish-adapted bypass is designed. Other solutions have also been shown to increase downstream fish survival past hydropower plants, such as guiding screens, louvres, wire screens and partial depth fine screen. Several international studies show that physical structures, such as fine-mesh racks with alternative escape routes and bypass arrangements provide very good results for downstream migration, for instance for brown trout and salmon, and has in recent years shown good results also for silver eels.

Downstream fish migration measures

The various measures to mitigate issues concerning downstream fish migration are listed below.



Relevant literature

  • Scruton, D. A., Pennell, C. J., Bourgeois, C. E., Goosney, R. F., King, L., Boot, T. R., Eddy, W., Porter, T., Ollerhead, R. and Clarke, K. 2008. Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia609, 225–239.
  • Larinier, M. and Travade, F. 2002. Downstream migration: problems and facilities. Bulletin Francais De La Peche Et De La Pisciculture 364: 181-207
  • Fjeldstad H-P. 2012. Atlantic Salmon Migration Past Barriers. Thesis for the degree of Philosophiae Doctor. Trondheim, May 2012. Norwegian University of Science and Technology. Faculty of Engineering Science and Technology. Department of Hydraulic and Environmental Engineering.
  • Calles O, Degermann, E., Wickstrøm E, Christiansson J, Wickstrøm H. and Næslund I. 2013. Anordningar för upp- och nedströmspassage av fisk vid vattenanläggningar. Havs- og Vattenmyndigheter. Report number 2013:14