Difference between revisions of "Costs of solutions"
Bendikhansen (talk | contribs) |
Bendikhansen (talk | contribs) |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | One of the goals of the FIThydro project is to determine the financial costs of implementing ecological mitigation measures (solutions). During the project, costs associated with mitigation according to the categories of habitat, fish migration, sediment and flow were collected by consulting FIThydro partners via a questionnaire, examining the latest peer-reviewed literature, directly contacting European operators within the FIThydro network and using publically-available reports (Austria: Österreichs E-Wirtschaft, France: Hydro Electricité, Sweden: Vattenfall). | |
− | + | The following table represents a summary of the results of the cost data obtained for the Deliverable 4.3 General Cost Figures for Relevant Solutions, Methods, Tools and Devices. The detailed report with all results can be accessed via https://www.fithydro.eu/deliverables-tech/ (D4.3). The table is intended to provide a general impression of the cost dimensions for mitigation measures. The values should therefore be interpreted as the ranges of costs for measures, rather than precise costs. The range estimates are based on case studies from different regions (Europe, North America and Australia). The costs from different regions have been converted to EUR using the average 2010-2019 exchange rate (0.82 for USD/EUR and 1.46 for AUD/EUR). Since there was limited information on what each case study included in the costs (planning, construction, monitoring, etc.), the costs are assumed to account for the entire project – unless otherwise specified. The values have been rounded based on expert judgement for improved readability. Minimum costs were rounded down and maximum costs were rounded up to the following increments: 1, 5, 10, 20, 50, 100, 150, 200, 500, 1000, 2000, 5000, 10000, 150000, 100000, 1000000. If only one value is provided, the cost estimate is based on a single case study. This table does not imply any claim to completeness or freedom from error. | |
{| class="wikitable" style="text-align:center;" | {| class="wikitable" style="text-align:center;" | ||
Line 9: | Line 9: | ||
! style="vertical-align:middle;" | Max | ! style="vertical-align:middle;" | Max | ||
! rowspan="2" style="vertical-align:middle;" | Unit | ! rowspan="2" style="vertical-align:middle;" | Unit | ||
− | ! rowspan="2" style="vertical-align: | + | ! rowspan="2" style="vertical-align:middle;" | Reference |
|- | |- | ||
| style="vertical-align:middle;" | [Euro] | | style="vertical-align:middle;" | [Euro] | ||
Line 19: | Line 19: | ||
| 10 | | 10 | ||
| 100 | | 100 | ||
− | | style=" | + | | style="text-align:left;" | per cubic meter |
− | | style="text-align:right | + | | style="text-align:right;" | 1,2 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Placement of stones in the river]] | | style="text-align:left;" | [[Placement of stones in the river]] | ||
| 50 | | 50 | ||
| 150 | | 150 | ||
− | | style=" | + | | style="text-align:left;" | per cubic meter |
− | | style="text-align:right | + | | style="text-align:right;" | 3 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Cleaning of substrate - ripping, ploughing and flushing]] | | style="text-align:left;" | [[Cleaning of substrate - ripping, ploughing and flushing]] | ||
| 1 | | 1 | ||
| 50 | | 50 | ||
− | | style=" | + | | style="text-align:left;" | per square meter |
− | | style="text-align:right | + | | style="text-align:right;" | 3 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Fish refuge under hydropeaking conditions]] | | style="text-align:left;" | [[Fish refuge under hydropeaking conditions]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Placement of dead wood and debris]] | | style="text-align:left;" | [[Placement of dead wood and debris]] | ||
| 10 | | 10 | ||
| 150 | | 150 | ||
− | | style=" | + | | style="text-align:left;" | per meter |
− | | style="text-align:right | + | | style="text-align:right;" | 4 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| rowspan="3" | Restoring habitat | | rowspan="3" | Restoring habitat | ||
Line 49: | Line 49: | ||
| 2,000 | | 2,000 | ||
| 1,000,000 | | 1,000,000 | ||
− | | style=" | + | | style="text-align:left;" | per weir |
− | | style="text-align:right | + | | style="text-align:right;" | 5,6 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Construction of a 'river-in-the-river']] | | style="text-align:left;" | [[Construction of a 'river-in-the-river']] | ||
| 50 | | 50 | ||
| 5,000 | | 5,000 | ||
− | | style=" | + | | style="text-align:left;" | per meter |
− | | style="text-align:right | + | | style="text-align:right;" | 7 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Construction of off-channel habitats]] | | style="text-align:left;" | [[Construction of off-channel habitats]] | ||
| 1 | | 1 | ||
| 100 | | 100 | ||
− | | style=" | + | | style="text-align:left;" | per square meter |
− | | style="text-align:right | + | | style="text-align:right;" | 8 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| rowspan="2" | Shoreline habitat | | rowspan="2" | Shoreline habitat | ||
Line 68: | Line 68: | ||
| 10 | | 10 | ||
| 150 | | 150 | ||
− | | style=" | + | | style="text-align:left;" | per meter |
− | | style="text-align:right | + | | style="text-align:right;" | 3 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Restoration of the riparian zone vegetation]] | | style="text-align:left;" | [[Restoration of the riparian zone vegetation]] | ||
| 1 | | 1 | ||
| 50 | | 50 | ||
− | | style=" | + | | style="text-align:left;" | per square meter |
− | | style="text-align:right | + | | style="text-align:right;" | 8 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
− | | rowspan=" | + | | rowspan="18" | Fish migration |
− | | rowspan=" | + | | rowspan="10" | Downstream |
| style="text-align:left;" | [[Migration barrier removal]] | | style="text-align:left;" | [[Migration barrier removal]] | ||
| 2,000 | | 2,000 | ||
| 1,000,000 | | 1,000,000 | ||
− | | style=" | + | | style="text-align:left;" | per project |
− | | style="text-align:right | + | | style="text-align:right;" | 5,6 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Operational measures (turbine operations, spillway passage) ]] | | style="text-align:left;" | [[Operational measures (turbine operations, spillway passage) ]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Sensory, behavioural barriers (electricity, light, sound, air-water curtains)]] | | style="text-align:left;" | [[Sensory, behavioural barriers (electricity, light, sound, air-water curtains)]] | ||
| 800 | | 800 | ||
| 4,000 | | 4,000 | ||
− | | style=" | + | | style="text-align:left;" | per m3/second |
− | | style="text-align:right | + | | style="text-align:right;" | 9 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Fish-friendly turbines ]] | | style="text-align:left;" | [[Fish-friendly turbines ]] | ||
| colspan="2" | 500,000 | | colspan="2" | 500,000 | ||
− | | style=" | + | | style="text-align:left;" | per turbine |
− | | style="text-align:right | + | | style="text-align:right;" | 10 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Skimming walls (fixed or floating)]] | | style="text-align:left;" | [[Skimming walls (fixed or floating)]] | ||
| colspan="2" | 3,000 | | colspan="2" | 3,000 | ||
− | | style=" | + | | style="text-align:left;" | per m3/second |
− | | style="text-align:right | + | | style="text-align:right;" | 11 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Bypass combined with other solutions]] | | style="text-align:left;" | [[Bypass combined with other solutions]] | ||
Line 110: | Line 110: | ||
| 25,000 | | 25,000 | ||
| style="text-align:left;" | per m3/second | | style="text-align:left;" | per m3/second | ||
− | | style="text-align:right | + | | style="text-align:right;" | 12 |
− | |- style="text-align:left; vertical-align: | + | |- style="text-align:left; vertical-align:middle;" |
− | + | | [[Fish guidance structures with narrow bar spacing]] | |
− | + | | 2000 | |
− | + | | 40000 | |
− | + | | per m3/second | |
| style="text-align:right;" | 11 | | style="text-align:right;" | 11 | ||
− | |- style="text-align:left; vertical-align: | + | |- style="text-align:left; vertical-align:middle;" |
− | + | | [[Fish guidance structures with wide bar spacing]] | |
− | + | | 2000 | |
− | + | | 40000 | |
− | + | | per m3/second | |
| style="text-align:right;" | 11 | | style="text-align:right;" | 11 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Bottom-type intakes (Coanda screen, Lepine water intake, etc) ]] | | style="text-align:left;" | [[Bottom-type intakes (Coanda screen, Lepine water intake, etc) ]] | ||
− | | colspan="2 | + | | colspan="2" | 17,000 |
− | | style=" | + | | style="text-align:left;" | per m3/second |
− | | style="text-align:right | + | | style="text-align:right;" | 9 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Other types of fine screens]] | | style="text-align:left;" | [[Other types of fine screens]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| rowspan="8" | Upstream | | rowspan="8" | Upstream | ||
Line 143: | Line 138: | ||
| 2,000 | | 2,000 | ||
| 1,000,000 | | 1,000,000 | ||
− | | style=" | + | | style="text-align:left;" | per project |
− | | style="text-align:right | + | | style="text-align:right;" | 5,6 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Nature-like fishways]] | | style="text-align:left;" | [[Nature-like fishways]] | ||
| 5,000 | | 5,000 | ||
| 20,000 | | 20,000 | ||
− | | style=" | + | | style="text-align:left;" | per vertical meter |
− | | style="text-align:right | + | | style="text-align:right;" | 13 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Pool-type fishways]] | | style="text-align:left;" | [[Pool-type fishways]] | ||
| 10,000 | | 10,000 | ||
| 100,000 | | 100,000 | ||
− | | style=" | + | | style="text-align:left;" | per vertical meter |
− | | style="text-align:right | + | | style="text-align:right;" | 19 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Baffle fishways]] | | style="text-align:left;" | [[Baffle fishways]] | ||
| 5,000 | | 5,000 | ||
| 100,000 | | 100,000 | ||
− | | style=" | + | | style="text-align:left;" | per vertical meter |
− | | style="text-align:right | + | | style="text-align:right;" | 5,11,14 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Fishways for eels and lampreys]] | | style="text-align:left;" | [[Fishways for eels and lampreys]] | ||
| colspan="2" | 600 | | colspan="2" | 600 | ||
− | | style=" | + | | style="text-align:left;" | per meter length |
− | | style="text-align:right | + | | style="text-align:right;" | 16 |
− | |- style="text-align:left; vertical-align: | + | |- style="text-align:left; vertical-align:middle;" |
− | + | | [[Fish lifts, screws, locks, and others]] | |
− | + | | 10000 | |
− | + | | 500000 | |
− | + | | per project | |
| style="text-align:right;" | 11 | | style="text-align:right;" | 11 | ||
− | |- style=" | + | |- style="vertical-align:middle;" |
− | | style=" | + | | style="text-align:left;" | [[Truck transport]] |
− | | style="background-color:#D0CECE;" | | + | | colspan="2" style="background-color:#D0CECE;" | NA |
− | | style="background-color:#D0CECE; | + | | style="background-color:#D0CECE; text-align:left;" | |
− | |||
| style="text-align:right; background-color:#D0CECE;" | | | style="text-align:right; background-color:#D0CECE;" | | ||
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
Line 184: | Line 178: | ||
| 5,000 | | 5,000 | ||
| 20,000 | | 20,000 | ||
− | | style=" | + | | style="text-align:left;" | per vertical meter |
− | | style="text-align:right | + | | style="text-align:right;" | 13 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
− | | | + | | style="text-align:left;" | Sediment |
| rowspan="2" | Routing | | rowspan="2" | Routing | ||
| style="text-align:left;" | [[Drawdown reservoir flushing]] | | style="text-align:left;" | [[Drawdown reservoir flushing]] | ||
| 1 | | 1 | ||
| 50 | | 50 | ||
− | | style=" | + | | style="text-align:left;" | per cubic meter |
− | | style="text-align:right | + | | style="text-align:right;" | 15,17 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
− | | style="text-align:left;" | [[Sediment sluicing]] | + | | rowspan="5" | |
+ | | style="text-align:left;" | [[Sediment sluicing]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| rowspan="4" | Removal | | rowspan="4" | Removal | ||
| style="text-align:left;" | [[By-passing sediments ]] | | style="text-align:left;" | [[By-passing sediments ]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Off-channel reservoir storage]] | | style="text-align:left;" | [[Off-channel reservoir storage]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Mechanical removal of fine sediments (dredging)]] | | style="text-align:left;" | [[Mechanical removal of fine sediments (dredging)]] | ||
| 5 | | 5 | ||
| 10 | | 10 | ||
− | | style=" | + | | style="text-align:left;" | per cubic meter |
− | | style="text-align:right | + | | style="text-align:right;" | 15 |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Minimizing sediment arrival to reservoir]] | | style="text-align:left;" | [[Minimizing sediment arrival to reservoir]] | ||
| colspan="2" | 150,000 | | colspan="2" | 150,000 | ||
− | | style=" | + | | style="text-align:left;" | per Vortex tube |
− | | style="text-align:right | + | | style="text-align:right;" | 18 |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| rowspan="3" | Environmental flow | | rowspan="3" | Environmental flow | ||
Line 237: | Line 221: | ||
| style="text-align:left;" | [[Mitigating reduced annual flow and low flow measures ]] | | style="text-align:left;" | [[Mitigating reduced annual flow and low flow measures ]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| style="text-align:left;" | [[Mitigating reduced flood peaks, magnitudes, and frequency]] | | style="text-align:left;" | [[Mitigating reduced flood peaks, magnitudes, and frequency]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|- style="vertical-align:middle;" | |- style="vertical-align:middle;" | ||
| Short-term flow regime | | Short-term flow regime | ||
| style="text-align:left;" | [[Mitigating rapid, short-term variations in flow (hydro-peaking operations)]] | | style="text-align:left;" | [[Mitigating rapid, short-term variations in flow (hydro-peaking operations)]] | ||
| colspan="2" style="background-color:#D0CECE;" | NA | | colspan="2" style="background-color:#D0CECE;" | NA | ||
− | | style=" | + | | style="background-color:#D0CECE; text-align:left;" | |
− | | style="text-align:right | + | | style="text-align:right; background-color:#D0CECE;" | |
|} | |} | ||
+ | Cost data is available on upstream fish migration and habitat measures, whereas data for environmental flow and sediment management is limited. In general, there are two types of costs associated with fish migration facilities, (i) the costs of the structure itself (concrete or nature-like) and (ii) the discharge to run the facility. While the costs of the structure are tangible, the costs associated with flow releases and sediment management depend on several factors. In addition to structural requirements, cost calculations for flow release and sediment management must consider dynamic processes (water regulation and release) as well as long-term adaptive management. Further, these measures are strongly linked to production losses, which can vary (sometimes hourly) based on power prices on the open power market. | ||
+ | |||
+ | As there are no legal requirements or standards for reporting (either publically or privately) the costs of mitigation, the overall data situation is considered poor. A generalization of mitigation costs at hydropower plants is often challenging due to logistical, ecological and political factors. Available data differs greatly by measure type and is highly site-specific. The site-specific nature of hydropower also means that power plant owners face an array of ecological targets. To address multiple targets simultaneously and minimize expenses, operators tend to implement a combination of measures, which makes cost disaggregation for specific measures difficult (e.g., a natural fish pass supports fish migration as well as habitat provision). Thus, information about costs of specific mitigation measures are often difficult to obtain or unavailable. Furthermore, there is a high variability of costs and an inconsistency in reporting, which limits the comparison of costs across a larger number of studies (e.g. no specified information on land acquisition costs, legal costs, material costs, expenses for staff and renting machinery etc.). | ||
+ | |||
+ | =References= | ||
+ | #Personal communication G. Loy (2020). Verbund Innkraftwerke. | ||
+ | #Personal communication J. Zehender (2020). Bayerische Landeskraftwerke. | ||
+ | #Cramer, M.L. (ed) (2012). Stream Habitat Restoration Guidelines. Olympia, Washington, Washington Departments of Fish and Wildlife, Natural Resources, Transportation and Ecology, Washington State Recreation and Conservation Office, Puget Sound Partnership, and U.S. Fish and Wildlife Service. | ||
+ | #Cederholm, C.J., Bilby, R.E., Bisson, P.A., Bumstead, T.W., Fransen, B.R., Scarlett, W.J., and Ward, J.W. (1997). Response of juvenile coho salmon and steelhead to placement of large woody debris in a coastal washing stream. North American Journal of Fisheries Management 17: 947-963. (cited in: Fischenich, C., and J., Jr. Morrow (1999). Streambank Habitat Enhancement with Large Woody Debris. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-13). U.S. Army Engineer Research and Development Center, Vicksburg, MS.) | ||
+ | #CDFG (California Department of Fish and Game) (2004). Recovery strategy for California coho salmon. Report to the California Fish and Game Commission. | ||
+ | #Garcia de Leaniz, C. (2008). “Weir removal in salmonid streams: implications, challenges and practicalities.” Hydrobiologia 609: 83-96. | ||
+ | #Saldi-Caromile, K., Bates, K., Skidmore, P., Barenti, J., and Pineo, D. (2004). Stream Habitat Restoration Guidelines: Final Draft. Olympia, Washington, Washington Department of Fish and Wildlife, Washington Departments of Ecology and U.S. Fish and Wildlife Service. | ||
+ | #Evergreen (Evergreen Funding Consultants) (2003). A Primer on Habitat Project Costs. Prepared for the Puget Sound Shared Strategy. | ||
+ | #Turnpenny, A.W.H., Struthers, G., and Hanson, P. (1998). A UK guide to intake fish-screening regulations, policy and best practice with particular reference to hydroelectric power schemes. Harwell Laboratory, Energy Technology Support Unit, UK. | ||
+ | #Dewitte, M., Courret, D., Laurent, D., and Adeva-Bustos, A. (2020). Comparison of solutions to restore a safe downstream migration of fish at a low-head run-of-river power-plant. Fish Passage 2020 - International Conference on River Connectivity. | ||
+ | #Venus, T.E., Smialek, N., Pander, J., Harper, R., Adeva-Bustos, A., Harby, A., and Hansen, B. (2020). D4.3 General Cost Figures for Relevant Solutions, Methods, Tools and Devices. FIThydro Report. | ||
+ | #Ebel, G., Kehl, M., and Gluch, A. (2018). Fortschritte beim Fischschutz und Fisch-abstieg: Inbetriebnahme der Pilot-Wasserkraftanlagen Freyburg und Öblitz. Wasserwirtschaft, 108, 54-62. | ||
+ | #Rutherfurd, I.D., Jerie, K., and Marsh, N. (2000). A Rehabilitation Manual for Australian Streams. Volume 2. Land and Water Resources Research and Development Corporation & Cooperative Research Centre for Catchment Hydrology. | ||
+ | #Porcher, J. P., and Larinier, M. (2002). Designing Fishways, Supervision of Construction, Costs, Hydraulic Model Studies. Bulletin Français de La Pêche et de La Pisciculture, (364 supplément), 156–165. https://doi.org/10.1051/kmae/2002100 | ||
+ | #Rovira, A., and Ibàñez, C. (2007). Sediment management options for the lower Ebro River and its delta. Journal of Soils and Sediments, 7(5), 285-295. | ||
+ | #Pulg, U., Stranzl, S., Espedal, E., Postler, C., Gabrielsen, S., Alfredsen, K., and Fjeldstad, H.-P. (2020). Effektivitet og kost-nytte forhold av fysiske miljøtiltak i vassdrag Effektivitet og kost-nytte forhold av fysiske miljøtiltak i vassdrag. Bergen. | ||
+ | #Espa, P., Castelli, E., Crosa, G., and Gentili, G. (2013). Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydropower reservoir. Environmental management, 52(1), 261-276. | ||
+ | #Personal communication A. Doessegger (2020). Regionalwerke Schweiz. | ||
+ | #Thueringer State Office for the Environment, Mining and Nature Conservation (Landesamt für Umwelt, Bergbau und Naturschutz). Available online: https://tlubn.thueringen.de/wasser/fluesse-baeche/durchgaengigkeit/ |
Latest revision as of 14:06, 9 October 2020
One of the goals of the FIThydro project is to determine the financial costs of implementing ecological mitigation measures (solutions). During the project, costs associated with mitigation according to the categories of habitat, fish migration, sediment and flow were collected by consulting FIThydro partners via a questionnaire, examining the latest peer-reviewed literature, directly contacting European operators within the FIThydro network and using publically-available reports (Austria: Österreichs E-Wirtschaft, France: Hydro Electricité, Sweden: Vattenfall).
The following table represents a summary of the results of the cost data obtained for the Deliverable 4.3 General Cost Figures for Relevant Solutions, Methods, Tools and Devices. The detailed report with all results can be accessed via https://www.fithydro.eu/deliverables-tech/ (D4.3). The table is intended to provide a general impression of the cost dimensions for mitigation measures. The values should therefore be interpreted as the ranges of costs for measures, rather than precise costs. The range estimates are based on case studies from different regions (Europe, North America and Australia). The costs from different regions have been converted to EUR using the average 2010-2019 exchange rate (0.82 for USD/EUR and 1.46 for AUD/EUR). Since there was limited information on what each case study included in the costs (planning, construction, monitoring, etc.), the costs are assumed to account for the entire project – unless otherwise specified. The values have been rounded based on expert judgement for improved readability. Minimum costs were rounded down and maximum costs were rounded up to the following increments: 1, 5, 10, 20, 50, 100, 150, 200, 500, 1000, 2000, 5000, 10000, 150000, 100000, 1000000. If only one value is provided, the cost estimate is based on a single case study. This table does not imply any claim to completeness or freedom from error.
Cost data is available on upstream fish migration and habitat measures, whereas data for environmental flow and sediment management is limited. In general, there are two types of costs associated with fish migration facilities, (i) the costs of the structure itself (concrete or nature-like) and (ii) the discharge to run the facility. While the costs of the structure are tangible, the costs associated with flow releases and sediment management depend on several factors. In addition to structural requirements, cost calculations for flow release and sediment management must consider dynamic processes (water regulation and release) as well as long-term adaptive management. Further, these measures are strongly linked to production losses, which can vary (sometimes hourly) based on power prices on the open power market.
As there are no legal requirements or standards for reporting (either publically or privately) the costs of mitigation, the overall data situation is considered poor. A generalization of mitigation costs at hydropower plants is often challenging due to logistical, ecological and political factors. Available data differs greatly by measure type and is highly site-specific. The site-specific nature of hydropower also means that power plant owners face an array of ecological targets. To address multiple targets simultaneously and minimize expenses, operators tend to implement a combination of measures, which makes cost disaggregation for specific measures difficult (e.g., a natural fish pass supports fish migration as well as habitat provision). Thus, information about costs of specific mitigation measures are often difficult to obtain or unavailable. Furthermore, there is a high variability of costs and an inconsistency in reporting, which limits the comparison of costs across a larger number of studies (e.g. no specified information on land acquisition costs, legal costs, material costs, expenses for staff and renting machinery etc.).
References
- Personal communication G. Loy (2020). Verbund Innkraftwerke.
- Personal communication J. Zehender (2020). Bayerische Landeskraftwerke.
- Cramer, M.L. (ed) (2012). Stream Habitat Restoration Guidelines. Olympia, Washington, Washington Departments of Fish and Wildlife, Natural Resources, Transportation and Ecology, Washington State Recreation and Conservation Office, Puget Sound Partnership, and U.S. Fish and Wildlife Service.
- Cederholm, C.J., Bilby, R.E., Bisson, P.A., Bumstead, T.W., Fransen, B.R., Scarlett, W.J., and Ward, J.W. (1997). Response of juvenile coho salmon and steelhead to placement of large woody debris in a coastal washing stream. North American Journal of Fisheries Management 17: 947-963. (cited in: Fischenich, C., and J., Jr. Morrow (1999). Streambank Habitat Enhancement with Large Woody Debris. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-13). U.S. Army Engineer Research and Development Center, Vicksburg, MS.)
- CDFG (California Department of Fish and Game) (2004). Recovery strategy for California coho salmon. Report to the California Fish and Game Commission.
- Garcia de Leaniz, C. (2008). “Weir removal in salmonid streams: implications, challenges and practicalities.” Hydrobiologia 609: 83-96.
- Saldi-Caromile, K., Bates, K., Skidmore, P., Barenti, J., and Pineo, D. (2004). Stream Habitat Restoration Guidelines: Final Draft. Olympia, Washington, Washington Department of Fish and Wildlife, Washington Departments of Ecology and U.S. Fish and Wildlife Service.
- Evergreen (Evergreen Funding Consultants) (2003). A Primer on Habitat Project Costs. Prepared for the Puget Sound Shared Strategy.
- Turnpenny, A.W.H., Struthers, G., and Hanson, P. (1998). A UK guide to intake fish-screening regulations, policy and best practice with particular reference to hydroelectric power schemes. Harwell Laboratory, Energy Technology Support Unit, UK.
- Dewitte, M., Courret, D., Laurent, D., and Adeva-Bustos, A. (2020). Comparison of solutions to restore a safe downstream migration of fish at a low-head run-of-river power-plant. Fish Passage 2020 - International Conference on River Connectivity.
- Venus, T.E., Smialek, N., Pander, J., Harper, R., Adeva-Bustos, A., Harby, A., and Hansen, B. (2020). D4.3 General Cost Figures for Relevant Solutions, Methods, Tools and Devices. FIThydro Report.
- Ebel, G., Kehl, M., and Gluch, A. (2018). Fortschritte beim Fischschutz und Fisch-abstieg: Inbetriebnahme der Pilot-Wasserkraftanlagen Freyburg und Öblitz. Wasserwirtschaft, 108, 54-62.
- Rutherfurd, I.D., Jerie, K., and Marsh, N. (2000). A Rehabilitation Manual for Australian Streams. Volume 2. Land and Water Resources Research and Development Corporation & Cooperative Research Centre for Catchment Hydrology.
- Porcher, J. P., and Larinier, M. (2002). Designing Fishways, Supervision of Construction, Costs, Hydraulic Model Studies. Bulletin Français de La Pêche et de La Pisciculture, (364 supplément), 156–165. https://doi.org/10.1051/kmae/2002100
- Rovira, A., and Ibàñez, C. (2007). Sediment management options for the lower Ebro River and its delta. Journal of Soils and Sediments, 7(5), 285-295.
- Pulg, U., Stranzl, S., Espedal, E., Postler, C., Gabrielsen, S., Alfredsen, K., and Fjeldstad, H.-P. (2020). Effektivitet og kost-nytte forhold av fysiske miljøtiltak i vassdrag Effektivitet og kost-nytte forhold av fysiske miljøtiltak i vassdrag. Bergen.
- Espa, P., Castelli, E., Crosa, G., and Gentili, G. (2013). Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydropower reservoir. Environmental management, 52(1), 261-276.
- Personal communication A. Doessegger (2020). Regionalwerke Schweiz.
- Thueringer State Office for the Environment, Mining and Nature Conservation (Landesamt für Umwelt, Bergbau und Naturschutz). Available online: https://tlubn.thueringen.de/wasser/fluesse-baeche/durchgaengigkeit/